Center for Biophysics and Quantitative Biology

Biophysics News

default news image

Haolin Luo receives NCSA's Fiddler Innovation Fellowship

Dr. Taras Pogorelov's advisee, Haolin Luo, was awarded the National Center for Supercomputing Applications' Fiddler Innovation Fellowship.

Scientists discover how antibiotics penetrate Gram-negative bacterial cell walls

Scientists have labored for decades to find antibiotics that work against Gram-negative bacteria, which cause some of the deadliest infections in hospital settings and are most likely to be resistant to treatment with existing antibiotics. In a study reported in the journal Chemical Science, researchers developed a new method to determine how antibiotics with specific chemical properties thread their way through tiny pores in the otherwise impenetrable cell envelopes of Gram-negative bacteria.
Elizabeth Villa

Biophysics Alumna Elizabeth Villa Named 2021 HHMI Investigator

Thirty-three new investigators will join the community of Howard Hughes Medical Institute (HHMI) Investigators, including Biophysics and Quantitative Biology alumna Elizabeth Villa.

Molecular mechanism of hearing highlighted in the first atomic-resolution picture of outer hair cell surface proteins

Our sense of hearing is stimulated by the sound transmitted through the external auditory canal to the middle ear and then to the inner ear. The hair cells in the inner ear are known as the sensory cells of hearing and are capable of mechano-electrical transduction—the mechanism by which cells convert a mechanical stimulus into an electrical signal—and signal amplification, which mechanically amplifies low-level sound entering the ear’s cochlea.
Kevin Cheng

Biophysics Student Kevin Cheng Serves on SAGE

Biophysics and Quantitative Biology student Kevin Cheng has recently been selected to serve on the Graduate College Students Advising on Graduate Education (SAGE) board.
Image of HIV virus

Illinois scientists screening for gene expression fluctuations reveal latency-promoting agents of HIV

The human immunodeficiency virus (HIV) attacks cells that help the body fight infection, thus making the human body more vulnerable to other infections and diseases. Until this day, HIV remains a global pandemic of large proportions. Upon infection, inactive or latently infected cells capable of reactivating following treatment removal remain the major barrier to curing HIV.
Shriyaa Mittal

Alumna Spotlight: Shriyaa Mittal

Shriyaa Mittal obtained her doctoral degree in biophysics and quantitative biology from the Center for Biophysics and Quantitative Biology at the University of Illinois at Urbana-Champaign (UIUC) in Summer 2020.
Molecular transporters in brain cells captured in action: Glutamate transporters conducting water and ions.

Newly discovered glutamate transporter’s elevator-like structure and dual-function mechanism open up a field of possibilities

To maintain normal brain function, the extracellular levels of necessary neurotransmitters, such as glutamate—a major chemical signal responsible for communication between brain cells– have to be kept low to avoid excessive stimulation of receptors and nerve cell damage, a pathological process otherwise referred to as excitotoxicity.
Defne Gorgun

New research uncovering details of SARS-CoV-2 interactions with human cells featured by Biophysical Society

In order to infect cells, SARS-CoV-2, the virus that causes COVID-19, needs to insert itself into the membrane of human cells. New molecular models show what parts of SARS-CoV-2 are critical for that interaction, revealing new potential drug targets.
Chaoyi Jin

Alumnus Spotlight: Chaoyi Jin

Chaoyi Jin graduated from the University of Illinois at Urbana-Champaign (UIUC) with a doctoral degree in biophysics and quantitative biology in August 2019. He also holds a bachelor’s degree in physics from Nanjing University, China.