Site

Robert "Bob" B Gennis

Gennis robert 05

Professor Emeritus

r-gennis@illinois.edu

A320 CLSL, MC-712
Office: 333-9075
Lab: (217) 333-4939

Department of Biochemistry
University of Illinois
419 RAL B-4
600 S Mathews Ave
Urbana, IL 61801

Lab Page

Membrane protein structure/function; Expression of membrane proteins from hyperthermophiles; Structure and mechanism of prokaryotic respiratory enzymes that generate a membrane potential

Research Interests


Our laboratory studies the structure and function of cytochrome oxidase and other membrane respiratory complexes with the goal to understand how electron transfer is coupled to the generation of a transmembrane proton electrochemical gradient. We are primarily interested in the structure and function of membrane proteins that are proton pumps. Our efforts are directed at several membrane enzymes that are components of bacterial respiratory or photosynthetic electron transport systems. Of principle interest are the members of the large respiratory oxidase superfamily known as the heme-copper oxidases. This superfamily includes the mammalian cytochrome c oxidase and many prokaryotic homologues. The structures of two enzymes in this superfamily have been determined to atomic resolution by X-ray diffraction techniques. The heme-copper oxidases caltalyze the reduction of O2 and utilize the free energy liberated by this reaction to pump protons electrogenically across the membrane bilayer (4 H+/O2). This generates transmembrane voltage and pH gradients, constituting the protonmotive force. The protonmotive force is used to drive ATP synthesis, active transport of solutes and other reactions. The structure of these enyzmes show two putative proton-conducting channels and we are interested in the roles of residues in these channels during the catalytic cycle.

The bacterial oxidases offer the opportunity to utilize the full array of molecular genetics techniques in combination with spectroscopic methods to address the catalytic mechanism of these enzymes. Single-turnover rapid kinetics techniques are being utilized to examine these questions using site-directed mutations in representative members of each of the three major families comprising the heme-copper oxidase superfamily. These include enzymes from E. coli, R. sphaeroides, T. thermophilus and V. cholerae. In addition, we are utilizing FTIR difference spectroscopy to identify specific amino acids directly engaged in the catalytic mechanism.

One set of mutants of particular interest are those which decouple oxidase activity from proton pumping. We are investigating these mutants as a new important tool to explore the mechanism of the proton pump.

In addition to the studies on the heme-copper oxidases, we are also examining other respiratory enzymes that generate a protonmotive force, including the cytochrome bd ubiquinol oxidase from E. coli. We are using techniques aimed at obtaining structural information, including X-ray diffraction, as well as examining aspects of the catalytic mechanisms of these enzymes.

Education

B.S., 1966, University of Chicago
Attended Albert Einstein College of Medicine in the M.D./Ph.D. program, 1967-1968
Ph.D., 1971, Columbia University
Postdoc., 1971-1973, Department of Molecular and Cellular Biology (with Jack Strominger), Harvard University