Contents

I. REQUIREMENTS FOR THE DOCTORAL DEGREE .. 4

A. GENERAL REQUIREMENTS ... 4
 I. Tutorials and Lab Rotations ... 5
 II. Seminars .. 5
 III. Ethics Requirement .. 5
 IV. Grades/Grade Point Average (GPA) ... 5
 V. Petitions .. 6

B. TEACHING .. 7
 I. TA Orientation .. 7
 II. English Proficiency Requirements .. 7

C. EXAMINATIONS .. 8
 I. Biophysics Qualifying Examination .. 8
 Rules for BQE Grading .. 9
 II. Preliminary Exam .. 9
 III. Final Exam .. 10

D. REQUIREMENTS FOR THE MASTER OF SCIENCE DEGREE ... 11

E. SATISFACTORY ACADEMIC PROGRESS .. 11
 Annual Review ... 12

F. Degree Conferrals ... 13

II. REGISTRATION .. 15

A. ENROLLMENT PROCEDURES FOR UI INTEGRATE .. 15

B. MISCELLANEOUS REGISTRATION INFORMATION ... 16

III. SUPPORT ... 18

A. FELLOWSHIPS AND TRAINING GRANTS ... 18
I. REQUIREMENTS FOR THE DOCTORAL DEGREE

A. GENERAL REQUIREMENTS

The Graduate College recognizes three stages in a Doctoral degree program, each accounting for a minimum of 32 hours of course work (including 590 and 599 credits for research, where appropriate). The total credit should be a minimum of 96 hours.

Stage I: Course work taken in consultation with the first year advisor or research advisor, culminating in the successful passing of the Biophysics Qualifying Exam (BQE). Three lab rotations must be completed by the end of the first semester, resulting in the selection of a research advisor. If supported by a training grant, students can be given to the end of the first year to choose an advisor and complete their lab rotations.

Stage II: Research (Biophysics 599), culminating in the successful passing of the Preliminary Exam. The Prelim must be passed by the end of the 3rd year.

Stage III: Research (Biophysics 599), culminating in the successful passing of the Doctoral Exam.

For the Ph.D. degree, a total of 32 hours of credit in Stage I must be obtained. The following courses are required:

i. Biophysics 401 (3 hours, must be completed in the first year)
ii. Biophysics 595A (research seminar) and 595B (faculty seminar) (5 hours total, must be completed in the first two years)
iii. Biophysics 586 (2 tutorials, 1 hour each, must be completed before Preliminary Exam)
iv. Biophysics 581-83 (3 lab rotations, 2 hours each, must be completed in the first semester)
v. MCB 580 – ethics course (1 hour, must be completed in the first year)
vi. Two 500-level courses from the pre-approved Biophysics course list*
vii. Computational biology course or experimental lab course**
viii. Additional 400- and/or 500-level biophysics, science, or engineering courses to make up a total of 32 hours in i. through vii.

Most of these requirements should be completed during the first two years, and definitely should be complete prior to the Preliminary Exam.

*500-level courses in other departments may be petitioned to count towards the Biophysics and Computational Biology course requirement if they are not on the pre-approved list, if the main content is biophysical. Center approval should be obtained by students before registering for non-approved courses, if students wish to be given credit. The Biophysics & Computational Biology Office has a pre-approved list of courses available to students.

** If research is computational in nature, must take a lab course (BIOC 455, PHYS 552 or equivalent). If research is experimental in nature, must take a computation course (BIOP 470, BIOP 586C or equivalent).
I. Tutorials and Lab Rotations

The basic requirement is for 3 lab rotations (Biophysics 581-583, 5-weeks in length, 2 hours each) and 2 tutorials (Biophysics 586, 7-weeks in length, 1 hour each). Tutorials may not be taken on the same topic as a lab rotation, though you may take a rotation and a tutorial under the same professor, however, you may not complete a tutorial with your advisor.

All required lab rotations must be taken and completed by the end of the first semester. A short written report of 6-10 pages is expected for each rotation. On the basis of the lab rotations, students must select a research advisor by the end of the first semester. This includes ensuring acceptance by the advisor.

[NOTE: If necessary, students holding a Molecular Biophysics (MBTG) Training Grant or University fellowship can be allowed the first two semesters to choose a research lab and may take additional rotations, if desired. However, an early decision is strongly recommended.]

Each tutorial consists of meeting with a faculty member at least once a week for a 7-week period, and culminates in a written paper of 6-10 pages. Students should expect to submit two or more drafts, for advice on both scientific content and writing skills. It is possible to complete two tutorials in a single semester, with the second beginning the eighth week of classes.

Beginning Sp09, any student wishing to become involved with the Biophysics K-12 Outreach Program may substitute one semester’s worth of outreach activities for one tutorial. Prior project approval from the Biophysics Director is required.

II. Seminars

All first year students must take Biophysics 595A (Seminar) and Biophysics 595B (Faculty Research Topics Seminar) in their first semester. At least 80% of the class meetings must be attended for a satisfactory grade. Biophysics 595B will only be required in the first semester.

Students are required to continue to register for Biophysics 595A (research seminar) until the end of their second year, for a total of four semesters.

III. Ethics Requirement

Graduate students in the sciences at the University of Illinois are expected to have training in professional ethics. For this purpose, graduate students in the Center for Biophysics and Computational Biology are required to take the ethics course offered by the School of Molecular and Cellular Biology, MCB 580. For more information regarding the course, which is offered each spring semester, visit www.life.illinois.edu/mcb/580. Students must enroll in this course in their first year of study.

IV. Grades/Grade Point Average (GPA)

The University of Illinois grades on a 4.00 point plus & minus system (A=4.00; B=3.00; C=2.00; D=1.00; F(fail)=0.00). In order for the University to calculate the overall Grade Point Average (GPA), the number of hours for a course is multiplied by the numerical equivalent of the letter grade received. This is done for all graded courses and the sum of all graded courses is divided by the total number of graded hours. This is the GPA.
The Graduate College minimum GPA requirement for biophysics is 3.00 in all coursework. If a student’s overall GPA is below 3.00 for a semester, a warning letter will be sent from the Graduate College. If, after the completion of additional graded hours, the GPA has not been raised, the student will be placed on limited status. If the student is still on limited status the following semester, they will not be allowed to register for subsequent semesters. Students on limited status are also ineligible for degree conferral until the limited status is lifted.

In addition, the Center for Biophysics and Computational Biology has a minimum GPA requirement of 3.00 for the courses in i., iii.-viii above. If a student’s GPA in these courses falls below 3.00 for a semester, a warning letter will be sent from the Biophysics Office. If, after the completion of additional graded hours, the GPA has not been raised, the student will be placed on probation, and can be asked to leave the Program.

Grades of S (satisfactory) and U (unsatisfactory) are given for seminar courses, but not counted toward the GPA. Likewise, if a course is taken Credit/No Credit, it is not counted toward the GPA. Hours for these courses will be counted toward the total credit hours for the degree.

1. **Deferred grades** are temporary grades given for work not completed for a lab rotation and for Thesis Research (599). Thesis work will be graded DFR until the final examination is passed, when an S or U grade will be granted. Incomplete work for a lab rotation should be completed by the semester following the receipt of a DFR grade. The professor must complete a Supplemental Grade Report form, assigning a letter grade, before credit can be received for the course.

2. **Excused grades** (I) are temporary grades given for courses where work is not completed before the end of the semester. These must be cleared up before the reading day of the following semester. “I” grades not cleared by the appropriate time will become "FR" ("F by rule") and appear on the student’s transcripts as such. These are counted as F when computing GPA. Once the work is completed, the professor must submit a grade change form to replace the FR with a letter grade.

V. Petitions

For students who feel they have already met a requirement through previous coursework; want to receive 500-level credit for courses in other departments; want to be considered for an exception to a requirement; or want to request an extension of time to complete a project or degree; it may be possible to petition the Center for Biophysics and Computational Biology and the Graduate College. Petitions must have the approval of the advisor, the Center Director, and the Dean of the Graduate College. There are certain cases, as with a departmental requirement (versus a university requirement), where only the advisor and the Center Director need to approve the petition.

For requests an exception to a published Graduate College policy or deadline, an official on-line Student Petition Form must be completed by the student on the Graduate College website (http://www.grad.illinois.edu/gsas/petition-record-requests). Student record requests, such as change of curriculum or add/drop will be completed on a Curriculum Change/Transfer of Credit Form. The outcome of these requests will be forwarded to the student and the Biophysics and Computational Biology Office electronically by the Graduate College.
B. TEACHING

All Biophysics and Computational Biology students are **required to teach** for a **minimum of one semester** during their graduate career, though some students may be asked to teach for additional semesters if their advisors do not have an alternative means of support available. Students are strongly urged to complete this requirement in their first few years in the program. There is a limited number of Teaching Assistantships (TA) available through the Center for Biophysics and Computational Biology itself. Most appointments are made through other departments, such as Molecular and Cellular Biology and Physics. These TAships are highly competitive.

The Biophysics and Computational Biology Office will inform students each fall and spring when the School of Molecular and Cellular Biology is accepting applications. Students will be asked to complete an application on-line. Students may also apply for TAships in other departments. Most applications are due the semester prior to the proposed assignment (MCB TA applications for fall are due in mid-April; those for spring are due in mid-November), so students should be sure to submit applications to the appropriate departments well in advance for full consideration. Sometimes TAships can be arranged through the advisor's lab. This option should be discussed with the advisor directly. TA's are appointed for 1 semester, though some departments offer an option to renew the next semester. TAships are generally not offered over the summer, so other means of support must be arranged.

I. TA Orientation

Before students are allowed to act as TAs for a University course, they must pass the **Graduate Academy for College Teaching** program. This program is usually held one week prior to the beginning of classes in the fall and spring semesters. Students will attend large and small group sessions; be videotaped teaching a short lesson; and have the tape reviewed. (There are also follow-up sessions later in the semester that offer further training opportunities. These are not required for Biophysics and Computational Biology students, but may be attended if of interest to the students.)

II. English Proficiency Requirements

1. All non-native English speaking international students must pass the **English Proficiency Interview (EPI)** test before they can be enrolled in an orientation session or be appointed as a Teaching Assistant. It is also a graduation requirement of the University and of the Center for Biophysics and Computational Biology. Even U.S. citizens or permanent resident aliens must sit for the exam if English is not their native language. An exemption from the exam can be granted only if a student attended both high school and college in English speaking institutions.

 If any of the following have been passed prior to enrollment at UIUC, the scores will be accepted in lieu of the EPI test:

 - TSE passed with a score of 50
 - iBT* speaking sub-section passed with a score of 24
 - IELTS* speaking sub-section passed with a score of 8

 *scores must be less than 2 years old on the 1st day of class the semester the student enters the U of I

 The EPI test is offered every semester during specified weeks. Information will be disseminated from the Biophysics and Computational Biology Office regarding test dates and times. The exam is held at the Armory and the exams start promptly at the
time indicated. Students taking the exam need to bring a picture ID card and will need to arrive at least 15 minutes early to check in.

Results of the exam are sent to the Biophysics and Computational Biology Office approximately two weeks after the test date. The exam is scored pass/conditional pass/fail. If a passing grade is not earned, the exam must be taken again the following semester, but only after participation in language improvement activities have occurred. These improvement activities include: taking a English as a Second Language course (ESL 504 or 506, may be repeated); or hiring a private, OIR-approved tutor for a minimum of 10 hours to help improve English abilities. Students are required to take the EPI test each semester until they pass it, and it is a requirement for successful passage of the BQE. As of 2002, the University of Illinois only allows a student to take the EPI test three times. If the student fails the exam the third time, they will be required to take one of the alternate exams at their own expense until a passing score is achieved.

2. If a student receives a score of 102 or less on the iBT, they will also be required to take the ESL Placement Test (EPT) when they arrive on campus. The score received on the EPT determines the need for any ESL courses at the University of Illinois. These courses must be completed before the student will be allowed to TA or graduate.

C. EXAMINATIONS

There are three exams to be passed during the program leading to a Ph.D. degree in Biophysics and Computational Biology.

I. Biophysics Qualifying Examination

The first of these is the Biophysics Qualifying Exam (BQE), which must be passed before the end of the fourth semester of residence in the program. Students are expected to take the exam in their first year. The exam is administered every spring semester and may be taken twice, if necessary. The BQE has both written and oral components. The written BQE tests the student’s general knowledge of Biophysics and Computational Biology. It contains three sections (Experimental; Computational; Fundamentals of Biophysics). Six questions (out of 12 available) must be attempted, with at least one in each section. The oral BQE reviews biophysics knowledge further, especially in areas not mastered on the written exam, and determines the student’s progress in course work, research, and other programmatic matters. The BQE committee recommends to the faculty whether or not a student should pass and thus be admitted to Ph.D. candidacy. Passage of Biophysics 401 (or equivalent) as well as a biochemistry and physical chemistry course are strongly suggested before attempting to take the BQE. Regular attendance at seminars; study of past exams; and a good knowledge of the Biophysics and Computational Biology faculty’s research have also proven to be helpful.

Final decisions on admission of a student to Ph.D. candidacy are made by the Biophysics and Computational Biology faculty, and are based not only on the recommendation of the BQE committee, but also on the total academic record, the student's research potential, and the nature of the student's objectives and motivation. Formal admission to the Ph.D. candidacy also requires that the student be accepted into the research group of a Biophysics and Computational Biology faculty member who then serves as the student's official advisor.
As noted earlier, non-native English speaking international students must pass the EPI test in order to satisfy the requirements of the Qualifying Examination.

Rules for BQE Grading
In order to avoid confusion with complicated schemes of combinations of scores, here are the simple BQE Guidelines:

A. 4 or more passes (out of 6 written questions attempted)
 Students who receive 4 or more passes on the written BQE will not be required to retake the written BQE.

 However, students may be asked to retake the oral exam, depending upon their performance during the oral exam on any of the questions they did not pass, and/or any unanswered questions about their proposed research, progress with other program requirements, and related matters.

B. 3 or more fails (out of 6 written questions)
 Students who receive 3 or more fails on the written BQE must unconditionally retake both the written and oral portions of the BQE.

C. All other scores
 Students receiving scores not falling into either category A. or B. above should be prepared for a thorough oral examination on the BQE questions. The BQE Committee will decide the final outcome of the exam based on the performance at the oral: retaking the oral, or retaking both the written and oral parts of the BQE.

II. Preliminary Exam

The **second** exam, the Preliminary Exam, examines the student's thesis proposal and his or her knowledge and ability to pursue in-depth research in their chosen area. The primary purpose of the Preliminary Exam is to examine the validity of the thesis proposal and to test the student's fitness to carry out independent research. Students are expected to take the Preliminary Exam before the end of their third year in the Program. Students are also expected to have completed all coursework and tutorials prior to their prelim.

The exam is oral and is administered by an ad hoc committee recommended by the student's advisor, who serves as the chair of the committee. The committee is appointed by the Graduate College with the recommendation and consultation of the Director of the Center for Biophysics and Computational Biology. The Chair and a majority of the members of this committee must be members of the Graduate College. A majority must also be members of the Biophysics and Computational Biology faculty and at least two members must be tenured faculty. It is the student's responsibility to ensure that the committee is appointed at the appropriate time, at least three weeks prior to the proposed exam date. The student, with the permission of his/her advisor, initiates the appointment of the committee through the Center for Biophysics and Computational Biology Office, who will complete the appropriate paperwork for the Graduate College. Additionally, the Biophysics Office will need a copy of a Project Summary Report from the student for their file. This is a one page, double-spaced summary, which can be used to introduce research to the committee on prelim day!

The Preliminary Exam is based on a 20-30 page (double-spaced) thesis proposal presented to the committee. The proposal should include an Introduction, Methods and Materials,
Preliminary Results, Proposed Work, and References. Figures and captions should be incorporated into the text. It is the student's responsibility to see that the thesis proposal is in the hands of the committee at least two weeks before the committee meets.

At the start of the oral exam, the student presents a 20- to 30-minute outline of the proposed work. The committee then examines the student regarding facets of the proposal that need clarification, and makes suggestions which may facilitate the approach to the problem. Finally, the committee may raise questions of a more general nature, to test the adequacy of preparation for the proposed work, and general knowledge of Biophysics and Computational Biology.

At the conclusion of the oral examination, the chairperson of the committee will initiate the approval of the Preliminary Examination Result (PER) form and announce one of three possible decisions:

- a. Pass
- b. Fail
- c. Defer (the same committee must re-examine the student within 180 calendar days of the original exam and the outcome must be pass or fail)

III. Final Exam

The third exam is the Final Exam, which is a presentation and defense of the student's thesis work. The Final Exam committee is appointed by the Graduate College upon the recommendation of the Director of the Biophysics and Computational Biology and the student's thesis advisor. As with the Prelim, the student initiates the appointment of this committee through the Biophysics and Computational Biology Office, who prepares the paperwork for the Graduate College. Please note: Students are responsible for the completion of the Thesis/Dissertation Approval (TDA) form which must be signed at the defense along with the Final Examination Result (FER) form, which is sent by the Graduate College. The composition of the committee for the Final Exam has the same requirements as for the Preliminary Exam and is usually the same as that for the Preliminary Exam; however, a change in the direction of the thesis or departure of original faculty may require changes in the committee. The Final Exam may not be taken sooner than 6 months after the Preliminary Exam. Doctoral candidates must complete all requirements for the degree so as not to exceed five years after their first registration in the Graduate College. (See Petition section for exception to this rule.)

The final form of the thesis, at the time of deposit after a successful defense, must conform to the rules specified by the Graduate College. At the time of the defense, the thesis must be in essentially final form.

The Final Exam is a public exam, and the recommended format is a 50-minute formal presentation as a public seminar, with a short question period from the audience. The examination committee will then question the candidate in detail in a private meeting.

At the conclusion of the oral examination, the chairperson of the committee will announce one of three possible decisions:

- a. Passed, and the committee will sign the FER/TDA forms.
- b. Passed, but with revisions and the committee will sign the approval forms at a later date.
c. Failed and the student will not be admitted to another examination.

The Graduate College provides information regarding forms, thesis preparation, and electronic submission, which can be accessed via the web at: http://www.grad.illinois.edu/thesis-dissertation.

D. REQUIREMENTS FOR THE MASTER OF SCIENCE DEGREE

Students are not admitted into a program leading to a Master’s degree. The Master’s degree is not awarded to students continuing toward the doctoral degree in the program, or to students who are transferring to another PhD program on campus. However, under certain circumstances, a student may be awarded a terminal Master of Science degree. The requirements as follows:

- a total of 32 hours of credit in biophysics courses and related subjects.
- 10 hours of 500-level biophysics courses with a minimum GPA of 3.25. This 10 hours does not include seminar courses (Biophysics 595A/B) and/or research units (Biophysics 590/599) and can include no more than 2 hours of tutorials (Biophysics 586). 500-level courses in other departments count towards this 500-level formal course requirement if they are on the approved Biophysics course list.
- At least 4 hours of research (Biophysics 590 or 599) is required, with the work presented as a thesis (which is submitted to the Graduate College after the advisor’s approval) or research paper (which is submitted only to the advisor and/or Center Director). The paper should be a concise account of the student's research, in the style and format of an appropriate scientific journal, except that it should include a more detailed introduction to the area of investigation, and it may include a greater degree of speculation in the discussion. Bibliographic references should include complete titles. The paper should be between 10-50 typed, double-spaced pages, excluding figures and numbered references, which should be attached to the paper.

The evaluation of the paper will be made by the student's Biophysics 590/599 advisor. The advisor has the option of calling for an oral examination based on the research paper/thesis. Additionally, the Center Director will review the paper. After the evaluation of the paper, one of three possible decisions will be made by the Center Director:

a. The paper is approved, and the student passed the examination.
b. The paper should be revised and resubmitted within one month.
c. The student failed the examination.

E. SATISFACTORY ACADEMIC PROGRESS

Unless there are very unusual circumstances, the following conditions must be met in order for a graduate student to be considered as making satisfactory academic progress, and to be eligible for reappointment as an assistant or trainee:

- A student should give evidence of continuous effort and progress. Beginning with the end of the first academic year, and thereafter, the student should give evidence of continuous effort and progress in research.
• A student should have a primary research advisor by the beginning of the second semester in the program. If a student leaves a lab, they must arrange for a new advisor within the same semester. The only exception is official leave from the University, such as medical leave.

• A student should complete 32 hours of courses by the end of three semesters, following the outlines of the program requirements (above). If this condition is not fulfilled, he/she will not be appointed as a graduate assistant/trainee after that time without special permission from the Center for Biophysics and Computational Biology Director. This rule does not apply to special status students.

• Students should enroll for the maximum amount of course credit (including 590 and 599) for which they are eligible, usually 12-16 hours per semester (8 hours in the summer). A minimum of 8 hours of course work is required at all times, except with permission from the Center Director. International students must maintain an enrollment of 12 hours for the fall and spring terms to maintain their visa status.

• A doctoral student should complete all requirements for the degree not later than five years after entering graduate school with the B.S. degree. Continuation beyond this time requires special permission from the Center for Biophysics and Computational Biology Director and the Graduate College, in response to a petition from the student's research advisor.

• A student who has a GPA below 3.0 after two semesters will be considered as making unsatisfactory academic progress.

• A graduate assistant who performs inadequately, or irresponsibly, in a teaching or research position may be removed from the position with no commitment of alternative support.

Annual Review

The Center for Biophysics and Computational Biology holds annual reviews for all students. This process helps keep students on track toward the timely completion of their degree. The initial stage of review consists of a written Progress Report from the Biophysics & Computational Biology Office each year, which lists all requirements met and those still outstanding.

If deemed necessary, the director or advisor can call for a more thorough review by a small faculty committee, consisting of two to four members. This committee can be a potential Prelim and/or Final Exam committee. These reviews will help facilitate working relationships between faculty and students, and provide the student with more contacts who may be aware of new or alternative methods or studies, something a single advisor may be unaware of.

The reviews by progress report and/or committee are mandatory for all students. If requested, students are to provide their committee with a two-page synopsis of the work that has been completed, and the progress they have made each year. This synopsis will be reviewed by the committee and discussed with the student at a brief meeting, to be arranged by the student.
The Biophysics and Computational Biology Office will monitor the review process. The Office will remind the appropriate students to make preparations for these annual meetings, and keep records of the recommendations of their committees.

F. DEGREE CONFERRALS

When it is time to set up the final defense, students should first arrange a meeting with the Center Administrative Coordinator, as early as possible to verify that all the Center requirements necessary to graduate have been fulfilled.

Please be sure to verify all deadline dates with the Center Administrative Coordinator or Graduate College early in the semester prior to the planned graduation, to ensure the timely deposit of the appropriate forms and paperwork.

Ph.D. degrees are conferred three times a year: May, August and December.

As mentioned before, the Graduate College, which is located on the 2nd floor of Coble, gives complete instructions on the official University policies, procedures and preparation of the thesis. Briefly, they are:

- Students should indicate, while registering via UI Integrate/Enterprise, that they plan to graduate. This should be done early in the semester the student plans to graduate. If a student fails to meet the requirements for a certain degree conferral date, students must add their name again the following semester – it will not automatically roll over to the following degree list.

- Students, working with their research advisor, must select the final committee and inform the Biophysics and Computational Biology Office, at least three weeks before the exam. Arrangements for the defense date, time, and location of exam must also be made by the student. Student must relay this information along with the thesis title to the Biophysics community prior to the examination. The office personnel will complete the required paperwork and submit to the Graduate College. Please leave plenty of time to meet the Graduate College final examination date. The Graduate College approves of the committee members and sends the Final Examination Result (FER) form to the Biophysics and Computational Biology Office. Arrangements must be made to pick up this form from the office prior to the date of the exam. The FER form must be returned to the Center office immediately after completion of the oral exam (along with the TDA form – see below), to secure the Director’s signature prior to submission to the Graduate College.

- The thesis committee will need to sign the Thesis/Dissertation Approval (TDA) forms, as well as the FER form, at the time of the final exam. Thesis/Dissertation Approval forms can be found on the Graduate College website at http://www.grad.illinois.edu/forms/certificate. It is the student’s responsibility to prepare this form for their committee’s signature. As mentioned above, the Thesis/Dissertation Approval forms must be submitted to the Biophysics and Computational Biology Office after the defense to secure the Director’s signature, as they are invalid without the signature. The TDA form will be returned to the student after the thesis format check.
• A hard copy of the thesis must be submitted to the Center Office for the department format check, after the final defense. At that time, the on-line department format check form will be completed by the office personnel and submitted to the Graduate College. Without it, the Graduate College will not perform any format checks or accept the thesis for deposit.

• The Final Exam must be passed at least one and one-half months before the graduation date. Students must be registered during the semester that the final defense is taken. [NOTE: If a student is registered for the summer and defends prior to the first day of class for the fall semester, the student does not need to register for the fall. However, if the thesis is not deposited before the appropriate deadline, the decision not to register will affect student insurance and any RA appointments held, both of which require the student to be registered.] Please see the section on Exams for specific information on the Final Exam process.

• The final thesis and hard copy of the signed Thesis/Dissertation Approval forms must be deposited by the student to the Graduate College at least two and one-half weeks before the graduation date. Please note that as of December 2010, all theses must be deposited electronically. Hard copies of the Thesis/Dissertation Approval forms must be turned in to 204 Coble Hall, along with other required Graduate College paperwork. Check with the Thesis Office for other required forms.
II. REGISTRATION

In the fall of 2004, the University of Illinois began on-line student registration using the UI Integrate, or Enterprise, system. This system allows greater flexibility for student registration, because of its ease of access from personal computer systems.

First year students, will be required to follow the procedures below in order to register for the first time. Once enrolled, students may take advantage of the early registration period for subsequent semesters.

A. ENROLLMENT PROCEDURES FOR UI INTEGRATE

1. Log-on and Password

After students receive the official Notice of Admission from the University, they are eligible to register. However, they must first have their Student ID card and log-on ID. (The Graduate College should have sent an email over the summer to all new students which included their student email addresses, log-on ID, and passwords.) Once a log-on ID and password have been secured, it is possible to register on-line, however, please see Step 2 before proceeding with registration.

The Student ID card can be obtained from the Student ID Center located in the Illini Union Bookstore, 809 S Wright Street, in Champaign. A week prior to the beginning of classes, a temporary ID Center will also be set up in the Illini Union.

2. Advising

Before any Biophysics students can actually begin on-line registration procedures, they must first speak with the Entrance Advisory Committee (EAC). The EAC will help determine what classes would be beneficial for each student based on their background and proficiencies/deficiencies. A short orientation meeting will also be scheduled prior to the first day of instruction, to provide an overview of the Center’s program and will address the course requirements. Registration should take place soon thereafter, as the University charges a $25 late fee if registration has not been initiated by 5:00pm on the first day of instruction. Please note that first-year students may also meet with the any member of the EAC or BQE committee prior to spring registration to help determine spring courses.

3. Tutorial/Lab Rotation registration

Faculty research seminars will be held the week prior to fall classes. These presentations will provide information on research opportunities within faculty labs and will assist in the selection of lab rotations. After presentations have been completed, students will submit their top five (5) lab rotation choices to the Biophysics Administrative Coordinator. Using the list provided by the student, the first of three required lab rotations will be determined by the Biophysics Director, First-Year Advisor and Biophysics Coordinator (working in conjunction with the School of Molecular and Cellular Biology Admissions Committee when coordinating MCB faculty requests) by the first day of class. The other two rotations will be decided later in the semester. Most students will receive their first rotation choice for at least one, if not all, of their rotations. Sometimes a top-
preferred professor will not be able to accommodate additional students for a particular semester. In that case, it will be necessary for the Committee to choose another professor from the student’s list for the student to work with.

After the lab has been determined, it will be necessary to obtain the course registration numbers (CRN) from the Biophysics and Computational Biology Office, 156 Davenport, for the lab rotation courses. Each professor has his/her own CRN for the independent study courses (581, 582, 583, 586, 590, 599). Without these numbers, it will not be possible to register for the correct section.

Near the end of the third rotation, students will meet with the professor they wish to work with. If the professor and student agrees it is a good match, the student and professor will sign an agreement, which states the professor will support the student for the duration of their studies. This signed agreement will be submitted to the Biophysics and Computational Biology Office and kept in the student’s file.

4. Use of the on-line class schedule for other courses

Not all courses are offered each semester or every year. Lists of courses offered by a department for a particular semester can be found by going to the on-line Class Schedule. The general URL is: https://my.illinois.edu, with a link to Class Schedule. For a list of all courses offered by a department, students should follow the link to the Course Catalog. The Biophysics and Computational Biology Administrative Coordinator also has information as to when or how often a Biophysics course is offered. Students should develop the habit of going to the Web for information. It is often the most efficient way to locate information.

5. Where to Register

With all the above steps completed, it is finally time to go to a computer and register! Students should go to the website: https://my.illinois.edu and go to the link for Student Self-Service. Students may register on-line from their home computers or from various on-campus CITES Instructional Computing Sites (www.cites.illinois.edu/index.html). You can find a list of public sites and walk-up sites for your personal laptops. If problems occur during the on-line registration at an ICS, each site has a staff member there to assist in the process. You may also contact the CITES Resource Center (1211 Digital Computing Lab (DCL), 1304 W Springfield Ave, Champaign, phone: 244-7000. There is also a computer in the Biophysics and Computational Biology Office that is available for student use during normal working hours.

B. MISCELLANEOUS REGISTRATION INFORMATION

1. Encumbrances

If any money is owed to the University (library fines, parking fines, tuition, or fees) or a University requirement (official transcripts from previous University, non-compliance with state immunization laws) has not been completed, an encumbrance may be placed on a student’s registration. These encumbrances must be cleared up by 5:00pm on the first day of instruction, or registration will be
cancelled for that semester and further registration will not be allowed until the encumbrances have been cleared.

2. Required hours

To be considered a full-time graduate student by the University, students must be enrolled for a **minimum of 12 hours**. Depending on the type of support received, enrollment for more than the minimum amount of hours may be required. Most Biophysics and Computational Biology students enroll for 12 hours per semester through the academic year. Minimum enrollment for the summer session is 4-8 hours.

3. Summer Session

Biophysics and Computational Biology students are **required** to enroll for the Summer session. If there are extenuating circumstances which would prevent summer enrollment, the student must receive prior permission from the Director of the Center to defer registration. If an exemption from summer registration is granted, students must purchase optional health insurance available through the University of Illinois to cover them over the summer. This must be arranged through the Student Insurance Office, 100A N Henry Administration Building during their open enrollment period.
III. SUPPORT

While in the Center as a student in good standing and making satisfactory academic progress, Biophysics students will be offered some level of financial support. This support will be through fellowships, assistantships (either teaching or research), and tuition waivers.

A. FELLOWSHIPS AND TRAINING GRANTS

There are many fellowships and training grants available through the University. These awards are competitive and are based, primarily, on scholastic achievement. Students must be nominated by the Center to be considered for most of these awards.

The Molecular Biophysics Training Grant (MBTG) is one training grant currently available to Biophysics and Computational Biology students. It offers support for up to two years. Other fellowships are available throughout the year through the Graduate College and other sources. The Center Administrative Coordinator will keep students informed of deadlines, requirements, etc. when information is received from the Fellowship Office. The Fellowship web site: www.grad.illinois.edu/fellowships.

If awarded one of these fellowships or training grants, students may have to meet certain criteria or fulfill certain requirements specific to the award. Notification of these requirements will be given upon receipt of an offer of support. For example, students receiving a MBTG must attend a monthly seminar given by trainee recipients and fulfill certain course requirements.

B. ASSISTANTSHIPS

1. Research Assistantships

Research Assistantships, or RA’s, are usually given to a student through the laboratory in which he/she has chosen to do thesis research work. If a student changes labs, the funding source will also change. RA appointments are generally assigned at 50%, though under some circumstances, students receive 25% appointments, with the salary adjusted accordingly. A 25% appointment equals roughly 10 hours per week; a 50% appointment is roughly equal to 20 hours a week (based on a 40-hour work week). However, these are rough estimates, and you may be expected to put in more hours per week. The maximum appointment time allowed for graduate students is 67%, or about 26.5 hours per week. These appointments are limited to domestic students only and are rarely given.

Some RAships are more demanding than others. Students will need to discuss with the professor what duties will be expected of them and what time commitment is involved. It is generally up to the professor and student to work out the specifics of the RA, and to make sure the appointment is in place for each semester. RA’s are generally appointed for 11-month appointments. The appointments cover the two academic semesters plus two months in the summer, and are based on the policies of the home department of the advisor. Some departments offer 33% appointments in the summer – with the summer salary divided over three months instead of two. The checks will be smaller, but the students receive a paycheck in August which they won’t if the summer salary is paid out over two months.
2. Teaching Assistantships

All Biophysics and Computational Biology students are required to teach at least one semester [see Sec I.B.]. As with RAships, some Teaching Assistant appointments are more demanding than others. TA duties can run from grading of exams and papers, to audio-visual operators, to the actual teaching of courses. Generally, the professor who is in charge of the course, and to whom the TA reports, determines the responsibilities of the appointment and is considered the TA’s supervisor. They are also the main source of information regarding coursework or questions and provide the feedback to the student (and the Center for Biophysics and Computational Biology) regarding their job performance.

C. TUITION/FEE WAIVERS

Tuition waivers are automatically granted for graduate students in the College of Liberal Arts and Sciences who hold a University 25-67% TA or RA appointment. The service fee is also waived, however, students are responsible for health service and miscellaneous University fees (some of which can be refunded, upon request). The student must be enrolled for at least 12 hours and must have continuous employment for 91 days to qualify for the tuition waiver for an academic semester. Over the summer, enrollment for 8 hours is required, with continuous employment for 41 days.

D. ILLINOIS RESIDENCY

The Center for Biophysics and Computational Biology strongly encourages all students to apply for Illinois residency as soon as possible. Tuition for non-residents is much higher (almost 3 times more!!) than for residents of the State, and your advisor’s funding can go a lot farther, and help more students, if the majority of Biophysics and Computational Biology students are residents. You may visit the Residency website at www.usp.uillinois.edu/residency.cfm to determine if you qualify.

To apply for residency, students may pick up an application in the Office of Admissions and Records, 901 W Illinois Street, Urbana, or go on-line to www.usp.uillinois.edu/residency/petition.cfm and follow the link to the petition form.

It is possible that approval for residency may not be granted on the first, or second, attempt. If it is not, please try again as soon as possible.
IV. MISCELLANEOUS INFORMATION

A. US AND CAMPUS MAIL

All incoming students will have a mailbox provided for them outside the Biophysics and Computational Biology Office, 156 Davenport Hall. Once a student has joined a laboratory, they have the option to receive their mail at their lab, if it is more convenient, or to continue to receive it at the Center Office. Please advise all correspondents of the correct addresses below.

The official US mail address and FedEx or UPS delivery address is:

Center for Biophysics & Computational Biology
University of Illinois at Urbana-Champaign
156 Davenport Hall, MC-147
607 S Mathews Avenue
Urbana, IL 61801-3635
USA

The campus mail address is:

Biophysics and Computational Biology
156 Davenport Hall
MC-147

Also, please note the format of the above addresses. It is important to use these formats when mailing items on or off campus.

- Campus addresses must contain the person’s name, department, building location, and mail code (MC-##). Campus mail, which requires no postage, is to be used for official University business only. Greeting cards, catalogues, personal bills and letters, etc. are not acceptable. Campus mailboxes are located throughout the campus, and marked accordingly.

- US mail, which requires postage, must include a person’s name, street address, city, state, and zip code.

- Mail with an international address, may be sent via US mail, using the correct postage (rates can be obtained at any US Post Office) and must contain the postal code/city, with only the country of destination on the bottom line of the address. For more information on the United States Postal Service, please visit their web site at www.usps.com

B. SEMINAR AND OTHER NOTICES

The Center Administrative Coordinator will disseminate information vital to students through the campus mail and/or via e-mail. Please keep the Biophysics and Computational Biology Office informed of all changes of home or lab addresses, email addresses, and home and lab phone numbers.

Some seminar notices will be posted on the bulletin board outside 156 Davenport Hall, though most are posted on-line or announcements sent via email. Links to many departmental seminars are listed on the Biophysics and Computational Biology home page.
C. EMAIL ACCOUNTS

An email account can be obtained free of charge, to all registered students. The alias for student accounts is listed on the student ID cards. Accounts are maintained through the CITES Customer Support Services Resource Center at 1211 Digital Computing Lab (DCL), 1304 W Springfield Ave, Champaign. phone: 244-7000. The address should be activated within a week of the request.

D. PERSONAL COMPUTER ACCESS

Several of the CITES sites used for registration are also available throughout the year for student use. Please visit the CITES website (www.cites.illinois.edu) or contact the CITES Customer Support Services Resource Center at the address/phone above. In some cases, it will be necessary to sign up in advance to use equipment (such as scanners), so students will need to plan ahead of time in case there is a waiting list.

Some labs may give students who are rotating through access to a computer. Students will want to ask each professor about the specific lab's policy on student use of lab computers and related equipment.

E. PHOTOCOPYING

If it is necessary to make photocopies that are required for a class in the first year, prior approval from the Center Director is required to use the Biophysics and Computational Biology copy machine, located in 156 Davenport Hall.

If it is necessary to make photocopies for an advisor, access should be given for use of a copy machine in their home department.

If it is necessary to make copies for personal use, students will need to go to a copy center at a library or a copy shop (like Kinko's or FedEx) on campus. The Center regrets that it cannot pay for personal copies.

F. PAYCHECKS

Graduate students on RA, TA, or Fellowship appointments receive their pay on the 16th of each month. If the 16th of a given month falls on a Saturday, Sunday, or holiday, their pay will be issued on the last working day prior to the 16th.

Students are required to receive their earnings via direct deposit into a personal bank account (which need to be set up upon arrival in town). Having the earnings deposited directly into a bank account is more convenient and allows for a little more freedom. Students can rest assured that the money will be in their account on the 16th of every month. And, as an added bonus, some banks don't charge their customers for checking and savings accounts if they use direct deposit.

The first check should be directly deposited, though it is wise to verify with the banking institution that the money has been deposited before making transactions against the account. It takes at least one month, sometimes two, for the request for direct deposit to be processed.
G. PERSONNEL AND TAX FORMS

Students will need to complete the appropriate forms to have employment initiated.

1. Employee forms

Students are required to complete employment forms on-line through the net-based employment web site -- NESSIE (https://nessie.uihr.uillinois.edu). The NESSIE password and a log-on ID will be issued and sent to the student’s campus email address. The following mandatory forms must be completed on-line before the appointment is entered in the system.

- Employee Information form
- Loan Default form
- Direct Deposit form
- Ethics Orientation form
- I-Card Terms and Conditions form
- W-4 tax withholding form*
- I-9 Employment Eligibility Verification Form

ALL forms will be completed on-line. Please check with the Biophysics Office to set up an appointment. Information regarding your appointment was sent to you earlier in the summer.

*NOTE: International students will complete their W-4 forms in the Payroll Office – See 3. below. Domestic students will complete their W-4’s on-line.

Some of these forms only require a simple confirmation and submit and others require more personal information. Please do not use the “other” box for information, or it may hold up your paperwork. For example, do not use “Other” for degree title or granting institution, even if the correct choice is not available. Please put down just the basics. You may go in later to add additional information if you desire. It is very important to remember to hit the Submit button when you complete each form!!

All forms, especially the I-9, must be completed prior to receiving a first paycheck. To avoid delays in payments, all forms MUST be completed prior to August 16.

2. Fellowships

Fellowships for US citizens and permanent residents are subject to income taxes, even though taxes are not withheld during the year. Some items are tax-free, such as any fees paid (which are deductible from the value of the stipend) or required educational supplies like books, materials and supplies for coursework. Unfortunately, computers are considered desirable, not required. Sorry! For more information about this, Publication 520 - Scholarships and Fellowships, can be obtained from the Internal Revenue Service (IRS) at 1-800-829-1040 or 1-800-829-3676, or via the web at http://www.irs.gov/formspubs/index.html.

International students on temporary visas must have taxes withheld and must make arrangements with the Payroll Office (see below). Publication 519 - Tax Guide
for Aliens has information that may help explain these taxes and can also be obtained as above.

3. International Tax Laws

Most international countries have special tax laws and treaties with the United States. Prior to completing the W-4 form, international students must make an appointment with the University Payroll office, 100 Henry Admin Bldg, or call 333-6706.

The International Student and Scholar Services (ISSS) web site has information on frequently asked questions at http://isss.illinois.edu. Around tax season (January-April 15), ISSS offers income tax assistance workshops to help international students through the “red tape” of the American tax laws.

H. STUDENT MENTORS

All first-year students will be assigned a student mentor. These mentors are advanced Biophysics and Computational Biology graduate students who have been in the Program for at least one year. Mentors will be available to assist new students with questions they may have regarding registration, housing, courses, and the University or Biophysics and Computational Biology Program in general. Mentor email addresses will be sent to incoming students prior to their arrival on campus.

I. ILLINOIS BIOPHYSICS SOCIETY (IBS)

The Illinois Biophysics Society is an official U of I Registered Student Organization, run by the Biophysics and Computational Biology graduate students. The group has elected officials, including a President, Vice-President, Secretary, and Treasurer. They have designed t-shirts, organized receptions and picnics, and have developed a Biophysics and Computational Biology newsletter. IBS has also sponsored successful research symposiums for over 10 years.

We encourage new students to become active members of the IBS and to attend the group's activities. Meeting with other students on a regular basis will help students to learn about other areas of Biophysics and Computational Biology perhaps otherwise unknown to them. It may also help with networking opportunities after graduation, when looking for a Biophysics and Computational Biology-related position. Who knows, we may have future Nobel-prize winning scientists in our Program right now!

J. GET-TOGETHERS

In an attempt to keep the Biophysics and Computational Biology Students and Faculty in contact with others in the Center (which is hard to accomplish since everyone is spread out over the campus), we arrange get-togethers throughout the year.

In the past, we have sponsored Center picnics, pancake brunches, and winter parties, and at least once a semester, we will hold Biophysics reception at a local establishment. We will also host an all-Biophysics reception during student recruitment in the Spring. We want to encourage all students to attend these events.
K. MEDICAL SCHOLARS PROGRAM (MSP)

The Medical Scholars Program, or MSP, is a joint program between the College of Medicine and the Graduate School. This program allows students to pursue both Ph.D. and M.D. degrees. Most students begin with their graduate studies, where they complete all the degree requirements, except their thesis work. They then pursue medical school courses, returning to obtain their Ph.D. after they finish their core medical courses. This program is restricted to US citizens and permanent residents. For more information regarding this program, please contact the MSP Office, 190 Med Sciences Bldg, or call 333-4876.
V. SAFETY PRECAUTIONS

A. PERSONAL SAFETY RULES

Although Champaign-Urbana is a relatively safe environment, sometimes unfortunate incidents occur, which prompted me to include a section on safety precautions. Many of these precautions have been disseminated campus-wide by the University Police and the Chancellor's office to keep U of I students as safe as possible. It is important to **always be alert**!

In 2006, in two separate incidents, Biophysics & Computational Biology students' **locked** lockers were broken into at the Activities and Recreation Center (ARC) while they were using the gym facilities. These types of incidents are very common on campus and the surrounding communities. To check out the current crime statistics on and around campus, visit http://publicsafety.illinois.edu/universitypolice/policeblotter.html.

Unfortunately, we live in a world today where, in order to protect our possessions and ourselves, we must be suspicious and **always** on guard. Predators are everywhere and are looking for an opportunity to strike. This doesn't mean we have to live in constant fear, just **constant awareness of what is happening around us**.

Here are some general tips on staying aware while walking on campus (or anywhere). These precautions were gathered from various sources, such as the U of I Division of Public Safety website, and as many as possible are included here:

- **Walk alertly** and *keep your mind on your surroundings*, and on who is in front and behind you.

- Communicate the message that you are confident and know where you are going. *Stand tall, walk purposefully, and make eye contact* with people around you.

- **Trust your instincts!** If you feel uncomfortable in *any* situation, leave as quickly as possible.

- Use **well-lit and busy sidewalks**. Try to avoid deserted sidewalks, vacant lots, alleys, construction sites, and wooded areas. *Always take the safest route*, even if it's a little longer.

- **Walk facing traffic** to see approaching cars.

- **Don't wear headphones or talk on cell phones** while walking or jogging - they prevent you from hearing what is going on around you.

- If you feel you are being followed, **cross the street; head for nearest well-lit, populated area; yell for help; and call the police**. If you are calling from a *campus phone, dial 9 first then 911*. From an off-campus phone, dial 911. Also, take note of the police call boxes located at several locations around campus. See the Emergency Phone Locations Map (Appendix 7) for other locations.

- **Carry a cell phone, whistle, or personal alarm** to alert people you need assistance.
• Put an ICE (In Case of Emergency) entry in your cell phone, with the name and phone number of a loved one who can be contacted by emergency services workers in case of an emergency.

• Walk in pairs or groups whenever possible.

• Never, never, never hitchhike (take a ride in a vehicle of someone you do not know).

• Drink responsibly – many crime victims on the U of I campus are intoxicated and are easy prey for criminals. Drinking can diminish your ability to respond quickly and can impair your judgment when it comes to acting responsibly.

• Do not establish a set pattern of behavior - Remember, variety is the spice of life! If you leave at a set time every night, try to vary it somewhat and have two or three well-lit routes to take and vary them often.

Champaign-Urbana and campus area crime reports are available through the local newspapers or Daily Illini (the campus paper).

Escorts are available for students walking at night. Please call one of the following numbers, depending on the circumstances in which assistance is needed (all numbers are in the 217 area code):

<table>
<thead>
<tr>
<th>Office</th>
<th>Number</th>
<th>Type of Escort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motorist Assistance Program</td>
<td>244-HELP (4357)</td>
<td>Runs from 7:00am-5:45pm M-F (no holidays). Will escort students from campus buildings to any campus parking lot. They will also help with car problems/lock outs in campus lots during normal University hours.</td>
</tr>
<tr>
<td>http://www.parking.illinois.edu/about-us/motorist-assistance (Campus Parking general number: 333-3530)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass Transit District (MTD) 335 SafeRides</td>
<td>265-RIDE (-7433)</td>
<td>Runs from 7:00pm-6:30am beginning in Fall (begins at 5:00pm Nov-Mar), excluding breaks. Will give rides across campus and to some close off-campus locations. Max 3 person pickup. May wait 15-30 minutes for pickup.</td>
</tr>
<tr>
<td>SafeWalks Escorts</td>
<td>333-1216</td>
<td>Student Patrol Officer will provide late night escorts on campus 9pm-2am Sun-Wed; 9pm-3am Th-Sat during fall and spring semesters only. Need 15 minute notice.</td>
</tr>
<tr>
<td>http://www.dps.illinois.edu/universitypolice/student.patrol.html</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Other Important Safety Numbers

<table>
<thead>
<tr>
<th>Safety Number</th>
<th>Number</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>University Police (Non-Emergency)</td>
<td>333-1216</td>
<td>For emergencies use 9-911 when dialing from campus phones; 911 from outside phones</td>
</tr>
<tr>
<td>Rape Crisis 24-Hour Hotline</td>
<td>384-4444</td>
<td>Rape Advocacy, Counseling & Education Services (RACES)</td>
</tr>
<tr>
<td>Crimestoppers Program</td>
<td>373-TIPS</td>
<td>To anonymously report a crime</td>
</tr>
</tbody>
</table>
B. PERSONAL SAFETY TIPS FOR WOMEN

[NOTE to our male students: Please remember this--men are not immune to personal attacks! A majority of attacks on campus are against college-aged men walking alone, late at night, most of who have been drinking. So, even though these tips are aimed at women, men should also read, and practice, them.]

University campuses are known by criminals to be easy places to carry out their illegal activities. They are large, somewhat impersonal places where criminals can easily slip in and out, virtually unnoticed. In April 1997, a serial rapist was hitting Midwest campuses in a four-state area. He would select women who were alone in isolated areas, such as computer rooms, labs, or offices, and the crimes would occur inside the campus buildings. For more information on sexual assault and prevention, please visit the University Police website at www.dps.illinois.edu/universitypolice/sexualassault.html. For other programs offered by the University Police, please visit: www.dps.uiuc.edu/universitypolice/programs.html.

- If you are studying or working in an area, make sure the doors are properly locked. This includes dorm room doors!

- Never let a stranger in to your room, office, or building, especially if you are alone in that area.

- If you are working alone and someone walks in and makes you feel uncomfortable, trust your instincts and leave the area.

- When possible, study or work with a friend or group.

- Study in populated areas.

- Do not let a service or delivery person enter your area if you are by yourself. Ask for proper identification and if you feel uncomfortable, don't open the door or entrance.

- Locate the emergency phones and fire alarms in case you need help. Fire alarms are to be used for getting help in fires and any life-threatening emergencies.

- Don't isolate yourself in an open, easily accessible area. This provides the criminal with the opportunity to commit the crime.

- When possible, study or work in an area that has several exits. The more exits you have, the more options of escape you have.

- Remember -- awareness and risk reduction are 90% avoidance!! Stay alert and don't take risks! If you believe something is wrong, it is. Trust your instincts.

You may have noticed that one of the recurring themes is for you to trust your instincts! If you feel uncomfortable about someone, there is probably a very good reason to be and you should leave immediately! Don't worry about whether you will seem silly or if you'll hurt someone’s feelings...if someone is making you uneasy, get out. Women's intuition is not a myth, it is reality, and you have to learn to trust in it. If you think you are in danger or feeling threatened, you probably are.

Recently, a female Biophysics student was sent threatening emails from a male student who was in a class with her. She was very scared and we filed a complaint with the Dean of Students, who contacted the male in
question and told him to cease and desist. Luckily, no harm was done, but it is good to know that the University takes threats seriously. And it goes to show that it is not just strangers who we need to watch out for!

If you'd like information regarding women's safety issues, crime statistics, sexual assaults, and counseling information, you may contact the Women's Resources Center at 333-3137 or visit their website at http://studentaffairs.illinois.edu/diversity/women/. Information on women's self-defense training courses can be obtained through Division of Public Safety, at 333-1216. Info on the Rape Aggression Defense System, or RAD, can be found at www.dps.illinois.edu/universitypolice/rad.html.

C. MISCELLANEOUS SAFETY TIPS

- Keep your doors and windows locked at all times in your lab, office, home, or dorm room. Also, keep your blinds closed at night.
- When driving, keep your car doors locked and the windows rolled up, especially at night. Always lock your door when you leave your car. Never leave your keys in the ignition or leave your car running if you leave. Park your car in areas that will be well-lit and heavily traveled when you return. Before entering your car, always check under and around the car and in the back seat to make sure no one is hiding there. And never pick up hitchhikers or stop for strangers. If someone flags you down, go to the nearest phone and call the police. Let the police check it out.
- If taking a bus, use popular and well-lit bus stops; sit near the driver; be aware of who gets off the bus with you. If someone bothers you while on the bus, tell the bus driver. If you feel uncomfortable after exiting the bus, walk to a place near other people.
- When using an elevator, always look into the elevator before entering. If a passenger looks suspicious, don't get on. If you are waiting for the elevator and you are uncomfortable about someone waiting with you, walk away. If already on the elevator and someone suspicious enters, get off. Stand near the controls. If you are threatened and/or attacked, hit the alarm and as many floor buttons as possible.
- Let roommates or friends know where you are going and with whom, and when you expect to return, whenever possible.
- Never leave personal property unattended, even for a few minutes. Take your backpacks and laptops with you when you leave the area – or make sure they are locked in a desk or locker.

Here are a few final words on safety:

- If you are victimized, try to remain calm; call the police immediately; and get as detailed a description of the assailant as possible (hair color, eye color, clothes, height, weight, race, tattoos, scars, marks, complexion). If a vehicle was used, take note of the license plate number and description of the car.
- Remember, not all assailants are strangers. Actually, most are people you know or are acquainted with. If you feel your rights have been violated, you can file a criminal and/or University complaint against the offending party.
• Above all, don't ever think crime can't happen to you...because it can! Remember, it is up to you to take care of yourself. So, please, be careful and be safe!

D. IDENTITY THEFT

Identity theft is on the rise across the country. Predators do not even need any physical identification in order to steal your identity. A friend of mine had his credit card number stolen and used by someone living across the country! It took him months to clear his credit history of the fraudulent charges. The important thing is to safeguard your information. Do not give out your social security number or credit information to just anyone. Shred your credit card receipts and old banking statements – anything with identifying information that could be used to open a fraudulent account.

If your wallet is stolen, make sure you contact your credit card companies and banks immediately to cancel your cards and put a fraud hold on your accounts. One of the students whose wallet was stolen from ARC had his credit card stolen and used within hours of the burglary. He immediately put a fraud hold on his account and was not responsible for those charges.

You are entitled to one free credit check a year with three of the credit consumer reporting companies. You can go to one convenient website: www.annualcreditreport.com and obtain one free report from each of the following companies per year:

Equifax: 1-800-685-1111; www.equifax.com; Equifax Disclosure Dept., P.O. Box 740241, Atlanta, GA 30374

Experian: 1-888-EXPERIAN (397-3742); www.experian.com

TransUnion: 1-877-322-8228; www.transunion.com; Annual Credit Report Request Service, P.O. Box 105281, Atlanta, GA 30348-5281

For more information, you should visit the Federal Trade Commission website at: http://www.ftc.gov/bcp/edu/microsites/idtheft/

E. TORNADO SAFETY

Now that you live in the Midwest, you will need to get accustomed to the unusual weather here. March through October is "tornado season" in Central Illinois, but they can occur any time of the year. A tornado is a funnel-shaped cloud that touches the ground. They can be up to 1 mile wide and can remain on the ground from seconds to minutes. These storm clouds can destroy everything in their paths. In April 1996, an outbreak of tornadoes rumbled across the width of the state and right through the area, touching down in several places in Urbana, causing millions of dollars worth of damage to property, and almost entirely wiping out the small town of Ogden, east of Urbana. I'm not saying this to scare you, just to alert you to the very real danger that exists when these storms come through.

The Central United States' “Tornado Alley” is the area of maximum tornado frequency, with Illinois ranking 4th of the 2012 Top 10 Tornado States on the Weather Channels’ listing of tornadoes from 1991-2010! We have had plenty of practice dealing with the tornado threat. Here’s what you need to know to stay safe (this information has been collected from various expert sources).
• When a **Tornado Watch** is issued by the National Weather Service, it means **conditions are optimal for a storm outbreak**. At this level of alert, you should watch for changing weather conditions and you **should stay tuned to local television and radio stations** for up-to-the-minute weather reports. Emergency Civil Defense workers are in the fields, watching the skies for funnel clouds aloft and weather forecasters are in front of their radar screens looking for tell-tail tornado "hook echoes". If a funnel is spotted aloft, on the ground, or indicated on radar, a warning goes into effect immediately.

• As soon as a **Tornado Warning** has been issued in your area, you should **seek safe shelter immediately**. When tornado-spawning thunderstorms roll though, electric power can be disrupted. You should have a flashlight with you and a battery-powered radio to listen to for information on the path of the tornado. *Emergency Sirens* will go off around town -- a long 3-minute blast with a siren -- that is repeated every 30 minutes while the warning is in effect. In some cases, there is not enough time to issue a siren, which is why you **must be prepared on your own to seek shelter when conditions look threatening**. It only takes a few seconds for a tornado to touch down, wreak havoc, and return to the skies.

[Note: *Emergency sirens are tested on the 1st Tuesday of every month at 10:00 a.m.* Listen at that time so you know what to expect when an actual tornado is spotted. When you hear the siren at any other time, you should respond as if it is the real thing, until you have had time to determine if it is a false alarm or a real threat.]

• **Ideal shelter** would be a **basement or crawl space** of a house or building, in the southwest corner (or whatever direction the tornado is coming from), under a sturdy table, away from glass and exterior walls or doors, covered with a blanket. Unfortunately, this is not always possible, so here are your best alternate choices:

 Inside options:

 Go to the **lowest level possible** in a building, using the stairs (do *not* use the elevator), to **an interior hallway or other enclosed area**, such as a closet, staying **away from windows, exterior walls and doors**.

 Do not go to a **large room**, such as an auditorium or gymnasium, as the roof may collapse or be ripped off.

 In a wooden structure, such as a house, the basement is the safest place. **If a basement is not available, get under a heavy piece of furniture in the center of the house. Interior hallways or in the bathtub** are the next safest places. Remember to stay away from glass and exterior walls.

 Outside options:

 Outside is the worst place to be, as the debris field thrown off by a tornado is as dangerous as the tornado itself! If you hear a siren and you are outside, the **best thing is to take cover immediately inside** a steel-framed or concrete building or building marked with the Tornado Shelter sign (see pictures below).
For a list of all the Tornado Shelters located on the University of Illinois campus, visit: www.ocep.illinois.edu/emergencyplanning/tornado.html

If you are not near a building, **take cover in a ditch, ravine, or lowest ground depression** you can find...something that is not always easy in basically flat Central Illinois.

If you are **in a car and are in the path of a tornado, get out!** Get in a building, low-lying area, or under the girders of a highway overpass (though in recent years, there has been a debate whether it is really safe to hide under overpasses, with most agreeing it is NOT). **Don't try to out drive the tornado** if it is coming toward you, as they are unpredictable and fast. If you can drive at a 90° angle away from the path, you may be able to avoid it. Be safe!

F. FIRE SAFETY

Fires are something we **all need to be prepared for**, especially for those living with roommates, in multi-apartment complexes, or working in labs with flammable or combustible materials. In these cases, you may be cautious, but those around you may not be so concerned about the way they handle flammable materials or fire. Fires can start in an instant and spread quickly. Sometimes fires can be contained right away with minimal damage. Other times, unfortunately, people are in shock and slow to react and the fire can cause major damage. In March 2011, my neighbor awoke to smoke in her house. She got up and went to the living room and saw flames next to her couch. She came to get me after trying to douse the flames herself and we called 911. Within minutes her entire living room was engulfed in flames, while we watched helplessly outside. The scariest thing is she did not hear her smoke alarm when she noticed the smoke/fire! Luckily, she awoke in time and was able to get out safely.

As you can see, **we must have precautions in place to protect ourselves.** Here are some preparation tips gathered from various sources.

- **Install one or more smoke dual sensor (both ionization AND photoelectric smoke) detectors** (one in the kitchen, others near bedroom doors, in your lab…) and check the batteries once a month.

- **Locate several exit routes and study them carefully.** You may become disoriented in a fire and your chances are better of escaping if you know the fastest, safest way out. Remember, do **not use elevators during a fire** -- make sure you are familiar with the location of the stairwells.

- **Know the location of fire extinguishers and know how to use them.** Read instructions before an emergency.

- **Post emergency phone numbers** on or near your telephone. To report a fire or a life-threatening emergency **call 911** (9-911 from campus phones).

- **Report any unsafe conditions/safety hazards** in campus buildings to the Occupational Safety and Health at 244-0415. These conditions include: obstructed aisles, corridors and egress routes; illegal storage in corridors, fan or equipment rooms, or under stairs; improper handling and/or storage of flammable materials and chemicals; wedging open of fire doors; improper smoking habits or smoking in
non-permitted areas; overloading of extension cords, ungrounded plugs and unfused multiple outlet adapters for appliances.

If, after all your efforts to prevent it, a fire does occur here are some rules to follow to keep everyone as safe as possible:

• **Remove everyone** in the immediate area of the fire.

• **Activate** the nearest **fire alarm** box.

• **Call 911** to report the fire (or 9-911 from campus phones). Tell the 911 Dispatcher your exact location and situation. Tell them as calmly and as clearly as possible. Time is of the essence.

• **Confine the fire** by closing doors and windows.

• **Attempt to extinguish the fire only if it is safe to do so.** If it is out of control, you should leave it to the experts.

• **If there is smoke or heat, stay low to the ground.** Smoke and heat rise, so the air is cooler and clearer the lower you are. Most fire injuries are caused by smoke inhalation, so avoid breathing the smoke. Also, many household items can emit poisonous gases when heated and you want to avoid breathing the noxious vapors.

• If you must evacuate the building, use the stairwells, always moving down and out until it is safe to exit. **Do not use elevators.** Elevators can stop during power outages and you could be trapped; or the elevator could stop on the floor with the fire, the doors could open, and the fire could enter the elevator or elevator shaft and spread to other floors.

• **Before opening any door, feel it near the top.** If the door or door handle are **hot**, do **not** open the door. Put a **towel or sheet, preferably wet, under the door** so the smoke doesn't come into the room. **Close as many doors as possible between you and the fire.** Hang a light-colored cloth out the window to attract the attention of the firefighters below. **Do not jump** from an upper story - you could be hurt or killed in the fall. Help is on the way, try to be patient and remain calm. If the door is **not hot**, **open** the door **cautiously - stand behind the door** and be prepared to close it quickly if there is excessive smoke. **Do a final check before leaving** - if it is safe to do so and do not go back for your things if ordered to leave. Assemble outside and **do not go back into the building once outside, until notified** by the proper authorities that it is OK to re-enter the building. If you are unable to vacate the building due to physical limitations, stay where you are inside and call 911. If there is not a phone available, go to the stairwell landing, if clear and safe, and wait for help.

Final note:
We hope you never have to use these safety tips, but you should familiarize yourself with the information in this section. It may seem unusual to have this section included in a student handbook, however, we feel it is important to make you aware of the possible dangers that do exist in a campus setting, even at a relatively quiet Midwestern university. We hope it will give you peace of mind to be informed of how to protect yourself in an emergency, whatever the situation. It may even save your life, or the lives of those you love.
APPENDICES

1. BIOPHYSICS REQUIREMENTS TABLE

2. ACADEMIC YEAR CALENDAR

3. BIOPHYSICS COURSE DESCRIPTIONS

4. BIOPHYSICS FACULTY LIST

5. “HOW TO CHOOSE A THESIS ADVISOR”
 By Michael C. Loui, Former Associate Dean of the Graduate College

6. “THE CARE AND MAINTENANCE OF YOUR ADVISER”

7. EMERGENCY PHONE LOCATION MAP OF CAMPUS